Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:
Εισαγάγετε οποιοδήποτε κείμενο. Η μετάφραση θα γίνει με τεχνολογία τεχνητής νοημοσύνης.
Εισάγετε ένα ρήμα σε οποιαδήποτε γλώσσα. Το σύστημα θα εκδώσει έναν πίνακα συζήτησης του ρήματος σε όλες τις πιθανές χρόνους.
Εισαγάγετε οποιαδήποτε ερώτηση σε ελεύθερη μορφή σε οποιαδήποτε γλώσσα.
Μπορείτε να εισαγάγετε λεπτομερή ερωτήματα που αποτελούνται από πολλές προτάσεις. Για παράδειγμα:
A/B-тестирование (англ. A/B testing, Split testing) — метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей были изменены для того, чтобы выяснить, какие из изменений улучшают целевой показатель. Таким образом в ходе теста сравнивается вариант «A» и вариант «B», и целью является определение лучшего из двух протестированных вариантов.
Разновидностью A/B-тестирования является многовариантное тестирование. В этом случае тестируются не два целостных варианта, а сразу несколько элементов продукта или составных частей исследуемого объекта в различных сочетаниях, при которых каждый тестируемый элемент может быть двух видов (A или B).
Метод часто используется в веб-дизайне, типичные применения — исследование влияния цветовой схемы, расположения и размера элементов интерфейса на конверсию сайта. В веб-дизайне часто тестируются две очень похожие веб-страницы (страница А и страница В), которые различаются лишь одним элементом или несколькими элементами (тогда метод называют A/B/n-тестированием). Страницы А и В показываются различным пользователям в равных пропорциях, при этом посетители, как правило, не знают об этом. По прошествии определенного времени или при достижении достаточно большого числа показов, сравниваются числовые показатели цели и определяется наиболее подходящий вариант страницы. Преимуществом метода является использование при проектировании объективных данных. Для A/B-тестирования веб-дизайна часто используются инструменты от сервисов веб-статистики; в этом случае также часто важно применение механизма для разбиения пользователей, которым будет показан тот или иной вид дизайна (одному и тому же пользователю нужно показывать тот же самый вариант дизайна), например, на основе IP-адреса и затем установкой HTTP cookie.